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Genome sizes (expressed as C-values, or haploid genome sizes) of six species of Honduran plethodontid salamanders
(one species of Nototriton and five of Bolitoglossa) vary greatly. Nototriton has a moderate-sized genome (29.2 pg)
relative to other species of salamanders. Genome sizes in the species of Bolitoglossa span a range of 24 pg (~23.4
gigabases) of DNA and include the largest genomes (83.7 pg) reported for the genus and for the family Plethodontidae.
A phylogenetic analysis indicates that genome evolution in this group of salamanders featured mainly large increases in
the mass of nuclear DNA. We propose that these evolutionary changes in genome size reflect random drift in small,
isolated populations in the highlands of Central America.

S
ALAMANDERS show more variation in genome size
than any other vertebrate order (Gregory, 2005). Mean
C-values in salamanders range from 13.8 picograms

(pg) to over 120 pg of DNA (Gregory, 2016). This genome size
variation does not involve polyploidy, and instead is driven
by transposable elements (TEs) and other non-coding DNA
sequences (such as repetitive sequences) spread across the
karyotype, affecting chromosome size but not number or
shape between species (Mizuno and Macgregor, 1974; Orgel
and Crick, 1980; Sessions, 2008; Sun et al., 2012).

The lungless salamander family Plethodontidae is a highly
diverse group that comprises approximately two-thirds of all
species of salamanders (Shen et al., 2016; AmphibiaWeb,
2018). The published genome size range for plethodontid
species (13.8–76.2 pg) encompasses nearly the entire range of
genome sizes in the order Caudata (Sessions, 2008; Newman
et al., 2016), with genomes at the high end that are exceeded
only by species of the salamander families Amphiumidae and
Proteidae, which include the largest genomes of any tetrapod
(Gregory, 2016). Despite being the most species-rich and
genomically diverse family, there is relatively poor genome
size sampling across the genera of Plethodontidae. In
particular, little is known about genome size variation among
the most speciose group of plethodontids, the Neotropical
bolitoglossines. Most of what we know about this group of
309 species comes from a single study of 41 species (Sessions
and Kezer, 1991; AmphibiaWeb, 2018). C-values for these
species range from 20.8 pg in Parvimolge townsendi to 68.9 pg
in Bolitoglossa pesrubra (Sessions and Kezer, 1991). Within the
most species-rich Neotropical genus, Bolitoglossa, genome
sizes range from 42.3 to 68.9 pg (Sessions and Kezer, 1991), a
difference in amount of DNA equivalent in mass to eight
entire human genomes.

A growing body of evidence indicates that genome size has
measurable phenotypic correlates from the cell level to the

whole organismal level (Sessions and Larson, 1987; Roth et
al., 1994; Gregory, 2005). Both nuclear volume and overall
cell size are positively correlated with genome size, and the
combination of large cell and small body size can lead to
developmental constraints that have probably played an
important role in the morphological evolution of pletho-
dontid salamanders (Sessions, 1985; Sessions and Larson,
1987; Hanken and Wake, 1993; Roth et al., 1994, 1997; Parra-
Olea et al., 2004; Sessions, 2008). Thus, genome size
evolution in salamanders potentially reflects the accumula-
tion of TEs and non-coding DNA at the molecular level with
relaxed selective constraints at the organismal level (Gregory,
2005; Sessions, 2008; Sun and Mueller, 2014).

A full understanding of the biological significance of these
relationships will depend on a thorough understanding of
the variation in genome size in various groups, especially
among the diverse Neotropical species. Genome size data
offer a novel approach to the study of patterns of gene flow
and speciation, as well as the identification of cryptic species.
Here, we present new genome size data on Central American
species of Bolitoglossa and Nototriton from Honduras and
examine genome size diversity in these species within an
explicitly phylogenetic context. Our data include the largest
genome sizes yet reported for plethodontid salamanders and
reveal intraspecific differences in genome size that may
underlie biogeographic isolation and possible speciation
events.

MATERIALS AND METHODS

Taxon sampling.—We measured genome sizes of six Central
American bolitoglossine salamander species endemic to
Honduras, including Nototriton picucha and five species of
the genus Bolitoglossa. These included four members of the
subgenus Magnadigita: Bolitoglossa celaque (n¼ 3), B. diaphora
(n ¼ 2), B. heiroreias (n ¼ 1), B. porrasorum (n ¼ 2), and one
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member of the subgenus Nanotriton: B. nympha (n ¼ 1).
Museum vouchers can be found in the Material Examined.
All of these species have restricted ranges in montane regions
in Honduras. Nototriton picucha occurs in the Sierra de Agalta
of eastern Honduras at elevations of 1,890 to 1,930 m above
sea level (Townsend et al., 2011). Bolitoglossa celaque is known
from the Montaña de Celaque, the Sierra de Opalaca, and the
Sierra Lenca in southwestern Honduras, at elevations of
between 1,900 and 2,620 m (McCranie and Wilson, 2002).
Bolitoglossa diaphora is known only from the Sierra de Omoa
of northwestern Honduras at altitudes between 1,470 and
2,200 m (McCranie and Wilson, 2002). Bolitoglossa heiroreias
is known only from the vicinity of Cerro Montecristo and
Cerro Miramundo in the Trifinio International Park of El
Salvador, Guatemala, and Honduras, and from Volcán
Quetzaltepeque in Guatemala, at elevations of 1,800 to
2,300 m (Greenbaum, 2004). Bolitoglossa porrasorum occurs in
the environs of Pico Pijol and Montaña Macuzal in the Sierra
de Sulaco, Pico Bonito, and Cerro Corre Viento in the central
Cordillera Nombre de Dios, and the environs of Texı́guat in
the western Cordillera Nombre de Dios, all in north-central
Honduras, at elevations between 980 and 1,920 m (McCranie
and Wilson, 2002; Townsend and Wilson, 2016). Bolitoglossa
nympha occurs in western Honduras and is also found in
eastern Guatemala (Campbell et al., 2010). Our samples
include two allopatric populations each of B. celaque from
Cerro Celaque (B. celaque A) and San Pedro La Loma (B.
celaque B) and B. porrasorum from Corre Viento (B. porrasorum
A) and Texı́guat (B. porrasorum B; Fig. 1); the two populations
of B. porrasorum have previously been shown to represent two
deeply divergent lineages based on analyses of COI barcodes
(Townsend and Wilson, 2016).

Genome size estimation.—Specimens were euthanized in 0.1%
tricaine methanesulfonate solution (MS-222 buffered with
0.2% sodium bicarbonate, pH 7) and fixed in 10% buffered
formalin for a minimum of 24 hours, then rinsed in water
overnight, and stored in 70% ethanol. Blood cells were
extracted from fixed specimens by making a small incision

under the gular fold, clipping the heart, aspirating blood cells
with a pipet, and then dropping the blood cells onto glass
slides, following the method of Sessions and Larson (1987).

The nuclei of blood cells were stained with Schiff’s reagent
using the Feulgen method (Sessions and Larson, 1987;
Sessions, 1996). Slides were hydrated for 3 min in distilled
water, then hydrolyzed in 5 N HCl for 20 min at room
temperature, rinsed briefly in distilled water three times, and
placed in a Coplin jar filled with Schiff’s reagent (Humason,
1972) and stained for 90 min at room temperature. Next, we
soaked the slides in 0.5% sodium metabisulfite solution,
three changes, 5 min each and rinsed them three times with
distilled water. We then dehydrated the slides in an alcohol
series (70%, 95%, 100%, 1 min each) followed by air drying,
and mounted them in immersion oil and covered them with
a glass coverslip.

Stained slides were examined using an Axioskop 2 MOT
(Carl Zeiss) microscope. Images were taken with a color CCD
digital camera (Sony DXC-950P), and integrated optical
densities of individual nuclei were measured via KS400 (Carl
Zeiss Vision) software as described by Vilhar and Dermastia
(2002). Measurement images were shading-corrected and
densitometrically calibrated using a set of neutral-density
filters. For the C-values, 15–55 nuclei of RBCs were measured
per individual, depending on the quality of the cells (i.e.,
avoiding atypically shaped nuclei). We used Bolitoglossa
pesrubra from the Cerro de la Muerte in the Talamanca
mountains of Costa Rica as our standard based on the mean
of published C-values: 65.2 pg (Sessions and Kezer, 1991;
Vinogradov, 1998). Nuclear and cell areas of fixed, Feulgen-
stained RBCs (n¼20) were calculated using Leica Application
Suite (v. 4.0) from images taken at magnification 1003 with a
Zeiss Option Axioskop microscope and Leica DFC 290 HD
digital camera. Our estimated C-values were assessed by
comparing with a regression analysis of nuclear area vs.
genome size using nuclear areas calculated from stained RBC
nuclei and published data for a variety of taxa representing a
wide range of C-values (Gregory, 2016). Although red blood
cell (RBC) nuclei are diploid somatic cells, we have followed

Fig. 1. Map of Honduras to show the
localities of populations of Bolitoglos-
sa and Nototriton used in this study.
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convention and have expressed genome size as C-value, the
mass of DNA in a haploid genome expressed as picograms
(pg), where 1 pg ’ 1 billion base pairs (0.978 Gb) of DNA.

DNA extraction, PCR, and sequencing.—Cellular DNA was
extracted from muscle tissue preserved in SED buffer using a
Qiagen PureGene DNA Isolation Kit (Qiagen, Valencia, CA)
following the kit protocol. Fragments of 16S were amplified
using the 16Sar-L/16Sbr-H primer pairs (Palumbi et al., 1991).
PCR reactions were 20 lL in total volume, containing ~25
lng of DNA template, 4 lL 5X PCR buffer, 1.2 lL MgCl2 (25
mM), 0.09 lL dNTPs (10 mM), 0.8 lL of each primer (10 lM),
0.2 lL GoTaq Flexi polymerase (Promega, Madison, WI), and
11.91 lL H2O. Amplification protocol was as follows: initial
denaturation for 3 minutes at 948C, 35 cycles of denaturation
at 948C for 45 seconds, annealing at 508C for 45 seconds, and
extension at 728C for 45 seconds, with a final elongation at
728C for 5 minutes. PCR products were verified using
electrophoresis on a 1.5% agarose, ethidium bromide-stained
gel. Unincorporated nucleotides were removed from PCR
products using 1 lL of ExoSAP-IT (USB, Santa Clara, CA) per
10 lL of PCR product, which was followed by cycle
sequencing of both complementary strands using the BigDye
Terminator 3.1 Cycle Sequencing kit, followed by spin
column filtration through Sephadex before electrophoresing
on an ABI 3130xl (Applied Biosystems, Inc).

Phylogenetic analysis.—We constructed a phylogeny of
Bolitoglossa including the two subgenera presented in this
study: Magnadigita and Nanotriton. DNA sequences for the
16S ribosomal RNA gene were generated for B. heiroreias and
two representatives from two separate populations each of B.
celaque and B. porrasorum. Additional 16S data for species in
Eladinea, Magnadigita, and Nanotriton with known genome
sizes, including those presented in this study, were obtained
through NCBI (https://www.ncbi.nlm.nih.gov/genbank; Ta-
ble 1).

The 16S dataset included 18 individuals representing 16
taxa, which were aligned using MUSCLE in MEGA v7 with
default parameters and trimmed to 528 bp (Edgar, 2004;
Kumar et al., 2016). We used an HKYþGþI nucleotide

substitution model for 16S based on PartitionFinder 2
(Lanfear et al., 2016) and constructed a Bayesian-inference
(BI) phylogeny using BEAST v2.4.5 (Bouckaert et al., 2014)
with a coalescent constant population model and constrain-
ing monophyly among the EladineaþMagnadigita subgenera
as resolved by Rovito et al. (2015). The BI analysis was run
with four chains for 106 generations, sampling every 1,000.
Our results were assessed for stationarity with Tracer v1.6.0
(Rambaut et al., 2014), and trees were sampled using
TreeAnnotator with 10% burnin (Bouckaert et al., 2014).

In order to estimate the magnitude and direction of
genome size evolution in these species, a maximum
likelihood ancestral character reconstruction was used to
estimate genome sizes at each node in the phylogeny using
the package phytools (Revell, 2012) in R v.3.4.2 (R Core
Team, 2016).

RESULTS

As expected from published C-values from other members of
the genus Nototriton (Sessions and Kezer, 1991), the smallest
C-value was measured in N. picucha (29.2 pg), with
correspondingly small nuclear areas (47.2 lm2; Table 2; Fig.
2). C-values measured for species of the genus Bolitoglossa
ranged from 59.7 pg for B. nympha to 83.7 pg for B.
porrasorum A, the largest genome size yet reported for the
genus Bolitoglossa and for the family Plethodontidae, and one
of the largest genomes among salamanders (Table 2; Sessions,
2008; Gregory, 2016). A regression analysis of nuclear area vs.
genome size showed a strong overall correlation (Fig. 2; R2¼
0.91). However, this relationship is weaker only among
species of Bolitoglossa (R2 ¼ 0.67). Overall RBC surface area
appears also to be positively correlated with genome size and
nuclear area (Table 2). Like other members of the subgenus
Nanotriton (Villolobos et al., 1988), B. nympha has partially
enucleated RBCs (approximately 60%).

The individuals sampled from each of the two species, B.
celaque A and B. diaphora, show very similar C-values that
differ by less than 1 pg in each case (Table 2). The population
referred to as B. celaque A, however, has a genome size that is
nearly 10 pg larger than that of the geographically separate

Table 1. Species and samples used in the phylogenetic analysis.

Species Locality

GenBank accession number

16S

Bolitoglossa (Magnadigita) celaque A Honduras: Lempira MN429138
B. (Magnadigita) celaque B Honduras: Intibucá MN116215
B. (Magnadigita) cuchumatana Guatemala: El Quiché GU725454
B. (Magnadigita) diaphora Honduras: Cortés GU725447
B. (Magnadigita) dunni Honduras: Cortés GU725446
B. (Magnadigita) engelhardti Guatemala: San Marcos GU725448
B. (Magnadigita) flavimembris Mexico: Chiapas GU725449
B. (Magnadigita) heiroreias Guatemala: Chiquimula MN116218
B. (Magnadigita) helmrichi Guatemala: Zacapa GU725450
B. (Magnadigita) lincolni Guatemala: San Marcos AY526148
B. (Magnadigita) morio Guatemala: Chimaltenango KJ175098
B. (Nanotriton) nympha Honduras: Santa Barbara KC288003
B. (Nanotriton) occidentalis Mexico: Chiapas KC287912
B. (Eladinea) pesrubra Costa Rica: San Jose EU448104
B. (Magnadigita) porrasorum A Honduras: Colón MN116217
B. (Magnadigita) porrasorum B Honduras: Atlántida MN116216
B. (Magnadigita) rostrata Guatemala: Totonicapán KJ175099
B. (Nanotriton) rufescens Guatemala: Alta Verapaz KC287937
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population referred to as B. celaque B. In contrast, specimens
from two populations of B. porrasorum, A and B, differ from
each other by only 2.1 pg (Table 2).

Our ancestral character reconstruction of genome size
suggests that evolutionary change in genome size in these
species included both large increases and decreases in C-
values (Fig. 3). The ancestral value for Bolitoglossa was
estimated to be 56.4 pg, with a decrease at the base of the
Nanotriton clade and an increase leading to Eladinea þ
Magnadigita clade. Magnadigita has the most dynamic
variation in genome size, with two major shifts early in this
subgenus. One clade (B. cuchumatana, B. engelhardti, B.
helmrichi, B. rostrata) underwent a large decrease in genome
size and little diversification thereafter. Genome size appears
to have increased slowly across the rest of Magnadigita, with
rapid changes in both directions towards the tips.

DISCUSSION

Previously published data on species of plethodontid
salamanders show that they have an enormous range of
genome sizes (13.8–76.2 pg; x̄ ¼ 36.4; Gregory, 2016), with
the Neotropical species (tribe: Bolitoglossini; Wake, 2012)
having genome sizes averaging in the upper range of the
family (20.8–68.9 pg; x̄ ¼ 43.4; Sessions and Kezer, 1991;
Gregory, 2016). The results of this study extend the known
genome size variation for the genera Nototriton and Bolito-
glossa, as well as the family Plethodontidae. The largest

previously reported genome sizes in Bolitoglossa and Pletho-
dontidae were 68.9 pg (B. subpalmata) and 76.2 pg (Hydro-
mantes italicus), respectively (Sessions and Kezer, 1991;
Sessions, 2008). With the exception of B. nympha, all of the
species of Bolitoglossa presented in this study exceed the
largest known genome size previously known in the genus,
and with a C-value of 83.7 pg, B. porrasorum A now holds the
record as the largest reported genome size in the genus
Bolitoglossa and in the family Plethodontidae, and has one of
the largest genomes among salamanders (Sessions, 2008;
Gregory, 2016).

The phenotypic consequence of large shifts in genome size
is a topic of on-going investigation (Gregory, 2005). Genome
size is correlated with important developmental parameters,
including cell size, cell cycle time, and rates of growth and
differentiation (Sessions and Larson, 1987; Gregory, 2001,
2002; Sessions, 2008), as well as tissue and organ complexity
(Roth et al., 1993, 1994, 1997; Gregory, 2002; Mueller, 2015),
that may play a role in heterochrony (e.g., paedomorphosis;
Alberch and Alberch, 1981; Sessions and Larson, 1987;
Gregory, 2002; Jaekel and Wake, 2007; Sessions, 2008). It is
possible that these phenotypic correlates, such as slower rates
of development in organisms with large genomes, may be
maladaptive consequences of ‘‘run-away’’ genome expansion
via TE insertions and other non-coding sequences (Orgel and
Crick, 1980; Sessions, 2008; Sun and Mueller, 2014). The
possible role that these phenotypic correlates have played in
the morphological evolution of bolitoglossine salamanders
should be investigated further.

An unexpected result of our study is the discovery that B.
nympha, a member of the subgenus Nanotriton, has about
60% enucleated RBCs, a trait that has evolved independently
in different lineages of miniaturized plethodontid salaman-
ders with relatively large genomes and cells (Villolobos et al.,
1988; Mueller et al., 2008). The estimated genome size (59.7
pg) is larger than that of other members of this subgenus, B.
occidentalis (43.5 pg) and B. rufescens (42.3 pg). Because both
B. occidentalis and B. rufescens also have enucleated RBCs
(Villolobos et al., 1988), as does a newly described Mexican
species of Nanotriton (B. chinanteca; Rovito et al., 2012; S.
Rovito pers. comm.), the presence of enucleated RBCs is a
synapomorphy for the subgenus Nanotriton. Further investi-
gation is required to understand the relationship between
RBC enucleation, miniaturization, and cell size in pletho-
dontid salamanders, and to identify the mechanism and
possible adaptive significance of this phenotype (Villolobos
et al., 1988; Mueller et al., 2008).

Table 2. Species sampled, the number of specimens (N), the total number of measured cells (n), estimated C-values, RBC nuclear area (NA), and
cell areas (CA) of Bolitoglossa salamanders and Nototriton picucha analyzed in this study (standard deviations in parentheses). We used B.
subpalmata (C-value ¼ 65.2 from previously published values; Sessions and Kezer, 1991; Gregory, 2016) as our standard. ND: no data.

Species N n C-value (pg) NA (lm2) CA (lm2)

Nototriton picucha 1 55 29.2 (2.25) 47.1 (3.17) 216.9 (27.3)
Bolitoglossa (Eladinea) subpalmata 1 31 65.2 (5.58) 105.8 (9.1) 647.5 (117.2)
B. (Magnadigita) celaque A 1 30 81.5 (7.84) 125.6 (11.1) 521.3 (82.1)
B. (Magnadigita) celaque A 1 34 82.3 (10.5) ND ND
B. (Magnadigita) celaque B 1 15 72.4 (3.72) 109.2 (7.56) 588.4 (121.7)
B. (Magnadigita) diaphora 1 47 79.3 (7.80) 125.1 (6.35) 597.0 (115.9)
B. (Magnadigita) diaphora 1 29 79.5 (6.77) ND ND
B. (Magnadigita) heiroreias 1 32 69.8 (8.01) 119.6 (14.4) 508.9 (114.2)
B. (Magnadigita) porrasorum A 1 31 83.7 (6.87) 153.6 (19.4) ND
B. (Magnadigita) porrasorum B 1 52 81.6 (7.29) 119.0 (11.2) 491.3 (81.9)
B. (Nanotriton) nympha 1 43 59.7 (4.77) 105.0 (7.88) 361.7 (73.9)

Fig. 2. Erythrocyte (RBC) nuclear area vs. C-values of the specimens of
bolitoglossine salamanders examined in this study. Dotted line shows
the ‘‘best fit’’ line. The single specimen of Nototriton is indicated by the
open circle. Inset: Feulgen-stained RBC of Nototriton picucha (left) and
Bolitoglossa porrasorum B (right) at the same magnification.
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Only relatively limited research has been done on
intraspecific variation in genome size in salamanders
(Litvinchuk et al., 2004), including plethodontid salaman-
ders (Sessions and Larson, 1987; Licht and Lowcock, 1991;
Mueller et al., 2008). However, these studies found that there
is little intraspecific variation in genome size within species
and populations. In this study, we were able to examine two
specimens each of B. celaque A and B. diaphora from the same
populations. Our results from these small sample sizes reveal
modest intraspecific variation (1.0–3.0%) in genome size
within a given population. We found that differences in
genome size between geographically isolated populations
can be either relatively small (~2.5%), as in B. porrasorum A
vs. B, or relatively large (~13.0%), as in B. celaque A vs. B.
Interestingly, the populations of B. porrasorum with relatively
small differences in genome sizes are thought to represent
distinct species based on 16S and COI mtDNA data (Town-
send and Wilson, 2016). On the other hand, genetic distance
between B. celaque A and B. celaque B is relatively low, yet
these populations differ by about 10 pg in genome size,
suggesting that B. celaque A and B. celaque B are genetically
isolated from each other (Itgen, 2016). These data show that
evolutionary changes in genome size can be independent of
divergence in sequence structure of functional genes. These
results highlight the need for better sampling within species
across geographic ranges as it is unknown how much
variation in genome size can exist in a single species.

Some research suggests that genetic drift dynamics alone
cannot explain genome size evolution (Whitney and Gar-
land, 2010), including large genomes in salamanders (Mohl-
henrich and Mueller, 2016). However, TE-driven genome size

changes could be a major factor in genetic divergence among
geographically highly fragmented populations of salaman-
ders. The ‘‘mutational hazard hypothesis’’ proposes that
increased genome size via non-coding DNA is driven by the
degree of genetic drift (Lynch and Conery, 2003). Therefore,
it is more likely for non-coding DNA (i.e., TE insertion) to
become fixed in species with small effective population sizes
(Ne), resulting in gradual, or even rapid, increases in genome
size. The heterogeneous landscape of the Neotropics in
particular has resulted in high rates of genetic fragmentation
and speciation for bolitoglossine salamanders, which is
thought to be primarily driven by high ecological variation
across narrow elevational gradients (Wake and Lynch, 1976;
Rovito, 2017). In bolitoglossine salamanders, this relation-
ship has generated a pattern of highly specialized species
with limited distribution, and individual species (including
ones used in this study) are often found isolated on a single
mountain peak. Future work incorporating population
genetics and distribution may provide insight into whether
variation in Ne and genetic drift pressure is correlated with
the diversification in genome size in plethodontid salaman-
ders.

In summary, genome size evolution in plethodontid
salamanders appears to be highly dynamic, involving large
increases as well as decreases (Sessions and Larson, 1987;
Sessions and Kezer, 1991; Sessions, 2008). The Neotropical
genera show the widest range of genome sizes in the family,
and our results confirm that the most variation in absolute
mass of DNA is shown in the diverse genus Bolitoglossa,
despite the relatively limited sampling within the genus
(Sessions and Kezer, 1991; Sessions, 2008). We have added at

Fig. 3. Ancestral state reconstruction
of genome size across the Eladinea,
Magnadigita, and Nanotriton sub-
genera of Bolitoglossa. Node esti-
mates for genome size are denoted
at each node in the circles. Subgen-
era (Eladinea, Magnadigita, and
Nanotriton) are identified using the
taxonomy of Parra-Olea et al. (2004)
and Rovito et al. (2015). See Data
Accessibility for tree file.
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least five additional species and can now report that genome
size variation within the genus Bolitoglossa ranges from 42 pg
to 84 pg, a range of 42 pg, a difference equivalent to about 14
whole human genomes. Among the species examined in this
study, genome size diversity appears to reflect genetic drift in
small, isolated populations living in the extremely moun-
tainous regions of Central America, especially in the
mountains of northwestern Honduras (Townsend, 2014).

MATERIAL EXAMINED

Bolitoglossa celaque: (3) CM 170509–10, Lempira; CM
1705011, Intibucá.

Bolitoglossa diaphora: (2) CM 170506–7.

Bolitoglossa heiroreias: (1) CM 170508.

Bolitoglossa nympha: (1) CM 163310.

Bolitoglossa porrasorum: (2) CM 170504, Colón; CM 170505,
Atlántida.

Nototriton picucha: (1) CM 163327.

DATA ACCESSIBILITY

Supplemental material is available at https://www.
copeiajournal.org/ch-18-156.
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